Speech Emotion Recognition Based on SVM and ANN
نویسندگان
چکیده
منابع مشابه
Speech Emotion Recognition Based on a Hybrid of Hmm/ann
Speech emotion recognition, as a vital part of affective human computer interaction, has become a new challenge to speech processing. In this paper, a hybrid of hidden Markov models (HMMs) and artificial neural network (ANN) has been proposed to classify emotions, combining advantage on capability to dynamic time warping of HMM and pattern recognition of ANN. HMMs, which export likelihood proba...
متن کاملSpeech Based Emotion Recognition Using MFCC and ANN
Speech is the most natural mode of communication. This work emphasizes on recognizing different emotions from speech signal. There are two major sections in this project namely feature extraction from speech signal and give this features as input to classifier to recognize emotions. Emotional states of speaker are considered as namely angry, happy, sad and neutral. The testing section classifie...
متن کاملANN based decision fusion for speech emotion recognition
As a hot research field, speech emotion recognition has attracted increasing attentions from both academic and business. In this paper, we proposed a method to recognize speech emotions adopting ANNs and to fuse two kinds of recognitions using different features at the decision level. Each emotional utterance is recognized by some individual recognizers firstly. Then the outputs of these recogn...
متن کاملSpeech Emotion Recognition Using Scalogram Based Deep Structure
Speech Emotion Recognition (SER) is an important part of speech-based Human-Computer Interface (HCI) applications. Previous SER methods rely on the extraction of features and training an appropriate classifier. However, most of those features can be affected by emotionally irrelevant factors such as gender, speaking styles and environment. Here, an SER method has been proposed based on a concat...
متن کاملObject Recognition based on Local Steering Kernel and SVM
The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Machine Learning and Computing
سال: 2018
ISSN: 2010-3700
DOI: 10.18178/ijmlc.2018.8.3.687